
Regular Expressions
BC-COMS2710 Computational Text Analysis

Summer A

Motivation

● Searching for text strings is clearly a vital task in text analysis

● What if we want to search for a pattern or variations of a string, rather than a

single specific string?
○ misspelled words, plural/singular words, capitalized/uncapitalized, British/American spellings

etc.

● Ex: variations on “hello”: “Hello”, “hellooo”, “hellooooooo”

● Regular Expressions, or RegEx are flexible patterns which allow us to specify

all desired variations of a string in a single line

Without Regex

● To find all matches of “hello” with possible additional “o”’s in a string, need a

for loop, multiple conditional statements

for i in range(len(string)):

If ….

● Lot of work for a relatively simple, frequently used task

With Regex (in Python)

import re

txt = "hello hellloooo hellooooo helloo"

x = re.findall(r"hello+", txt)

#x will be a list of strings containing matches of the pattern in the text

RegEx Examples (Quantifiers)

● hello+
○ Matches “hello”, “helloo”, “hellooo” etc.

● cooo*l
○ Matches “cool”, “coool”, “cooool”, etc.

Quantifiers

Exercises + Cheatsheet

Cheatsheet: https://www.debuggex.com/cheatsheet/regex/python

Kahoot: www.kahoot.it

https://www.debuggex.com/cheatsheet/regex/python
http://www.kahoot.it

1. Quantifiers Exercise

Which regex would NOT match all words beginning with ‘a’ and are followed by at

least one ‘n’ ? (Ex. “annual”, “antique”)

A. an+

B. an*

C. an{1,}

1. Quantifiers Exercise Solution

Which regex would NOT match all words beginning with ‘a’ and are followed by at

least one ‘n’ ? (Ex. “annual”, “antique”)

A. an+

B. an*

C. an{1,}

Explanation: The answer is B since the regex an* would also match words

beginning with ‘a’ but having 0 ‘n’s following it. Answer C is equivalent to answer

A.

Character Classes (Sets)

Character Classes-

● Can make custom ranges using subsets of alphanumeric characters

● Ex. [a-m], [0-5]

● Ex. [ab-e] == [abcde]

2. Characters Exercise

Which regex would match all words that rhyme with “mouse”?

A. [a-z]ouse

B. [^m]ouse

C. [a-z]+ouse

2. Characters Exercise Solution

Which regex would match all words that rhyme with “mouse”?

A. [a-z]ouse

B. [^m]ouse

C. [a-z]+ouse

Explanation: The answer is C since there may be more than one preceding

character to “ouse”, which the ‘+’ accounts for. B is incorrect because there are

non alphabetical characters which it would match.

Groups

3. Groups Exercise

Which regex would match with all words rhyming with mouse, but not including

mouse?

A. [a-l | n-p]+ouse

B. [^m]ouse

C. [^m](ouse)

3. Groups Exercise Solution

Which regex would match all words rhyming with mouse, but not including

mouse?

A. [a-l | n-p]+ouse

B. [^m]ouse

C. [^m](ouse)

Explanation: The answer is technically A, since B and C could match non

alphabetic first characters. B and C are equivalent.

Special Characters: Shorthand Character Classes

Special Characters: Whitespace

Special Characters: “Empty” Strings

4. Special Characters Exercise

Which regex would match only distinct words rhyming with mouse (including

mouse)?

A. [a-z]+ouse

B. [a-z]+ouse\b

C. [.]+ouse\b

4. Special Characters Exercise Solution

(Same question as before)

Which regex would match only distinct words rhyming with mouse, (including

mouse)?

A. [a-z]+ouse

B. [a-z]+ouse\b

C. [.]+ouse\b

Explanation: B is correct because the word boundary ‘\b’ ensures that the word

ends in “ouse” and [a-z] ensures that the preceding characters are alphabetical.

Metacharacters

Escape Character

● The escape character is “\“

● Must be used for specifying metacharacters

● Example:
○ to match “^”, regex is “\^”

○ To match “\t” (but not tab character), regex is “\\t”

○ And to match “ (quotation mark), regex is “\””

● Exception: inside a set [] or a group (), metacharacters are literals
○ In regex “(+*?)”, no need for escape characters to specify + * ?

5. Metacharacters Exercise

Which regex would match all sentences ending with the word ‘farewell’ (assuming

all sentences end in a period) ?

A. farewell.

B. \sfarewell.

C. \bfarewell\.

5. Metacharacters Exercise Solution

Which regex would match all sentences ending with the word “farewell” (assuming

all sentences end in a period) ?

A. farewell.

B. \sfarewell.

C. \bfarewell\.

Explanation: C is correct because the empty space ‘\s’ ensures that it is in fact the

last word, and the escape character before the period ensures that it is read as a

period in the regex.

Lookarounds (Assertions)

6. Lookarounds Exercise

Which regex would match all names with the title “Dr. ” ? e.g. “Dr. Livingston”

A. (?=Dr.).+\b\s

B. (?<=Dr\.).+\b\s

C. (?=Dr\.).+\b\s

6. Lookarounds Exercise Solution

Which regex would match all names (with titles) where the title is “Dr. ” ? e.g. “Dr.

Livingstone”

A. (?=Dr.).+\b\s

B. (?<=Dr\.).+\b\s

C. (?=Dr\.).+\b\s

Explanation: The (?<=) expression will return matches only for where the

immediately preceding characters are “Dr\. “

B is therefore incorrect because it will only get the name, not the title.

A is incorrect because it does not include the escape character for the period.

More Cheatsheets/References

https://learnbyexample.github.io/python-regex-cheatsheet/

https://pythex.org/ --Regex checker

https://www.geeksforgeeks.org/python-regex-cheat-sheet/

https://learnbyexample.github.io/python-regex-cheatsheet/
https://pythex.org/
https://www.geeksforgeeks.org/python-regex-cheat-sheet/

Limitations of Regex in Application

● You have to already know what you’re looking for
○ be familiar with the text prior to using regex

● Easy to get false positives or false negatives of desired result

● Can get complicated and lose readability

● Can get computationally expensive
○ Every language/library is different in terms of optimization

● Best practice:
○ use for simple patterns (more than just a substring)

○ test expected results, desired positives and negatives before hand

○ Thoroughly validate results

Sources

● Computational Text Analysis in Python Ch. 3

● Jurafsky slides

● https://www.geeksforgeeks.org/python-regex-cheat-sheet/

● https://learnbyexample.github.io/python-regex-cheatsheet/

https://www.geeksforgeeks.org/python-regex-cheat-sheet/
https://learnbyexample.github.io/python-regex-cheatsheet/

