BC COMS 2710: Computational Text Analysis

BARNARD COLLEGE OF COLLANBIA UNIVERSITY

Copyright © 2016 Barnard College

Lecture 21 Phrases

Announcements

Final Projects:

- Presentation templates and instructions are on the final-project page on the website
- Report/paper templates will go up later this weekend

Course evaluations

- Due Monday June 14th
- Office hours
 - 5-6 pm today

Announcements – HW04

Due tonight

Likelihoods

- Words that don't appear in training
- Classifying document 1
- Twitter API
 - Lecture 13 slide 2

Pre-class Instructions

- 1. Create a Twitter developer account <u>https://developer.twitter.com/</u>
- 2. Go to <u>https://developer.twitter.com/en/apps</u> and log in with your Twitter user account.
- 3. Click "Create an app"
- 4. Fill out the form, and click "Create"
- 5. A pop up window will appear for reviewing Developer Terms. Click the "Create" button again.

Instructions from http://socialmedia-class.org/twittertutorial.html

Phrases

- n-grams
- Language models
- collocation

n-grams

N-grams

- Unigram
 - a single word
- Bigram
 - Two word phrase
- Trigram
 - Three word phrase
- 100-gram
 - One hundred word phrase
- n-gram
 - *n*-word phrase

We can add even more columns to our DTM

We can add even more columns to our DTM

	<i>w</i> ₁	<i>w</i> ₂	 	Wv	<i>W</i> ₁ , <i>W</i> ₂	<i>W</i> ₁ , <i>W</i> ₃	 W_{v-1}, W_v
d_1							
d_1							
d_n							

Language Models

Given a corpus C, what is the probability of a word w_i ?

$$P(w_i) = \frac{count(w_i)}{\sum_j count(w_j)}$$

Maximum Likelihood Estimation

Given a corpus *C*, what is the probability of a word "New"?

$$P(New) = \frac{count(New)}{\sum_{j} count(w_{j})}$$

Given a corpus *C*, what is the probability of a word "New"?

$$P(New) = \frac{count(New) + 1}{\sum_{j} count(w_{j}) + 1}$$

Given a corpus C, what is the probability of the phrase "New York"?

$$P(New) = \frac{count(New)}{\sum_{j} count(w_{j})} \qquad P(York) = \frac{count(York)}{\sum_{j} count(w_{j})}$$

We can't just combine these probabilities

P(*New*, *York*)

We also care about the order of the words

P(New) and the probability of P(York | New)

Given a corpus *C*, what is the probability of the phrase "New York"? P(New) and the probability of P(York | New)

P(New York) = P(New)P(York | New)

$$P(New) = \frac{count(New)}{\sum_{j} count(w_{j})}$$

$$P(York \mid New) = \frac{count(New York)}{\sum_{j} count(New w_{j})}$$

$$= \frac{count(New York)}{count(New)}$$

Given a corpus *C*, what is the probability of the phrase "New York"? P(New) and the probability of P(York | New)

$$P(\text{New York}) = \frac{count(New)}{\sum_{j} count(w_{j})} * \frac{count(New York)}{count(New)}$$

Probability of a sentence based on bigrams $P(w_1 \dots w_n) = \prod_{i=1}^{n} P(x_i | x_{i-1})$

Probability of a sentence based on trigram $P(w_1 \dots w_n) = \prod_{i=1}^{n} P(x_i | x_{i-1}, x_{i-2})$

Collocation

Point-wise Mutual Information

$$PMI(x, y) = \log \frac{P(x, y)}{P(x)P(y)}$$

$$PMI(w_1, w_2) = \log \frac{P(w_1, w_2)}{P(w_1)P(w_2)}$$

$$P(w_1, w_2) = P(w_2 | w_1) P(w_1)$$

$$PMI(w_1, w_2) = \log \frac{P(w_2 | w_1) P(w_1)}{P(w_1)P(w_2)}$$

$$PMI(w_1, w_2) = \log \frac{P(w_2 | w_1) P(w_1)}{P(w_1)P(w_2)}$$

Point-wise Mutual Information

$$PMI(x, y) = log \frac{P(y|x)}{P(y)}$$

$$PMI(w_1, w_2) = log \frac{P(w_2 | w_1)}{P(w_2)}$$

How likely are we to see w_1 followed by w_2 normalized by how likely are we to see w_2 in general