BC COMS 2710:
 Computational Text Analysis

Lecture 21
 Phrases

Announcements

- Final Projects:
- Presentation templates and instructions are on the final-project page on the website
- Report/paper templates will go up later this weekend
- Course evaluations
- Due Monday June $14^{\text {th }}$
- Office hours
- 5-6 pm today

Announcements - HW04

- Due tonight
- Likelihoods
- Words that don't appear in training
- Classifying document 1
- Twitter API
- Lecture 13 slide 2

Pre-class Instructions

1. Create a Twitter developer account https://developer.twitter.com/
2. Go to https://developer.twitter.com/en/apps and log in with your Twitter user account.
3. Click "Create an app"
4. Fill out the form, and click "Create"
5. A pop up window will appear for reviewing Developer Terms. Click the "Create" button again.

Instructions from http://socialmedia-class.org/twittertutorial.html

Today's agenda

Phrases

- n-grams
- Language models
- collocation

n-grams

N-grams

- Unigram
- a single word
- Bigram
- Two word phrase
- Trigram
- Three word phrase
- 100-gram
- One hundred word phrase
- n-gram
- n-word phrase

Document-Term Matrix

We can add even more columns to our DTM

$$
\begin{array}{llllllll}
W_{1} & W_{2} & W_{3} & W_{4} & \ldots & \ldots & \ldots & \ldots
\end{array} W_{v}
$$

$$
\begin{gathered}
d_{1} \\
d_{1} \\
\ldots \\
d_{n}
\end{gathered}
$$

Document-Term Matrix

We can add even more columns to our DTM

$$
\begin{array}{lllllllll}
w_{1} & w_{2} & \ldots & \ldots & w_{v} & w_{1}, w_{2} & w_{1}, w_{3} & \ldots & w_{v-1}, w_{v}
\end{array}
$$

$$
\begin{gathered}
d_{1} \\
d_{1} \\
\ldots \\
d_{n}
\end{gathered}
$$

Language Models

Probability of a word/unigram

Given a corpus C, what is the probability of a word w_{i} ?

$$
P\left(w_{i}\right) \quad=\frac{\operatorname{count}\left(w_{i}\right)}{\sum_{j} \operatorname{count}\left(w_{j}\right)}
$$

Maximum Likelihood Estimation

Given a corpus C, what is the probability of a word "New"?

$$
P(\text { New })=\frac{\operatorname{count}(\text { New })}{\sum_{j} \operatorname{count}\left(w_{j}\right)}
$$

Probability of a word/unigram
 Laplacian (add-one) smoothing

Given a corpus C, what is the probability of a word "New"?

$$
P(N e w)=\frac{\operatorname{count}(N e w)+1}{\sum_{j} \operatorname{count}\left(w_{j}\right)+1}
$$

Probability of a bigram

Given a corpus C, what is the probability of the phrase "New York"?

$$
P(\text { New })=\frac{\operatorname{count}(\text { New })}{\sum_{j} \operatorname{count}\left(w_{j}\right)} \quad P(\text { York })=\frac{\operatorname{count}(\text { York })}{\sum_{j} \operatorname{count}\left(w_{j}\right)}
$$

We can't just combine these probabilities
P(New, York)

We also care about the order of the words
$P($ New $)$ and the probability of $P($ York \mid New $)$

Probability of a bigram

Given a corpus C, what is the probability of the phrase "New York"?
$P($ New $) \quad$ and the probability of $\quad P($ York \mid New $)$

$$
\mathrm{P}(\text { New York })=P(\text { New }) P(\text { York } \mid \text { New })
$$

$$
\begin{aligned}
P(\text { New }) & =\frac{\operatorname{count}(\text { New })}{\sum_{j} \operatorname{count}\left(w_{j}\right)} \\
P(\text { York } \mid \text { New }) & =\frac{\operatorname{count}(\text { New York })}{\sum_{j} \operatorname{count}\left(\text { New } w_{j}\right)} \\
& =\frac{\operatorname{count}(\text { New York })}{\operatorname{count}(\text { New })}
\end{aligned}
$$

Probability of a bigram

Given a corpus C, what is the probability of the phrase "New York"? $P($ New $) \quad$ and the probability of $\quad P($ York \mid New $)$

$$
\mathrm{P}(\text { New York })=\frac{\operatorname{count}(\text { New })}{\sum_{j} \operatorname{count}\left(w_{j}\right)} * \frac{\operatorname{count}(\text { New York })}{\operatorname{count}(\text { New })}
$$

Language Modeling

Probability of a sentence based on bigrams

$$
P\left(w_{1} \ldots w_{n}\right)=\prod_{i}^{n} P\left(x_{i} \mid x_{i-1}\right)
$$

Probability of a sentence based on trigram

$$
P\left(w_{1} \ldots w_{n}\right)=\prod_{i}^{n} P\left(x_{i} \mid x_{i-1}, x_{i-2}\right)
$$

Collocation

Point-wise Mutual Information

$$
\begin{gathered}
P M I(x, y)=\log \frac{P(x, y)}{P(x) P(y)} \\
P M I\left(w_{1}, w_{2}\right)=\log \frac{P\left(w_{1}, w_{2}\right)}{P\left(w_{1}\right) P\left(w_{2}\right)} \\
P\left(w_{1}, w_{2}\right)=P\left(w_{2} \mid w_{1}\right) P\left(w_{1}\right) \\
\operatorname{PMI}\left(w_{1}, w_{2}\right)=\log \frac{P\left(w_{2} \mid w_{1}\right) P\left(w_{1}\right)}{P\left(w_{1}\right) P\left(w_{2}\right)} \\
\operatorname{PMI}\left(w_{1}, w_{2}\right)=\log \frac{P\left(w_{2} \mid w_{1}\right) P\left(w_{1}\right)}{P\left(w_{1}\right) P\left(w_{2}\right)}
\end{gathered}
$$

Point-wise Mutual Information

$$
\begin{aligned}
P M I(x, y) & =\log \frac{P(y \mid x)}{P(y)} \\
P M I\left(w_{1}, w_{2}\right) & =\log \frac{P\left(w_{2} \mid w_{1}\right)}{P\left(w_{2}\right)}
\end{aligned}
$$

How likely are we to see w_{1} followed by w_{2} normalized by how likely are we to see w_{2} in general

