BC COMS 2710: Computational Text Analysis

BARNARD COLLEGE OF COLLANBIA UNIVERSIT

Lecture 19 Dimensionality Reduction

Copyright © 2016 Barnard College

Announcements – Assignments

Readings 05:

• No more this semester – congrats!

• HW02

- Mostly done grading
- You all did very well!!!
- HW04
 - Due Thursday

Announcements

- P/D/F deadline is today
- Course Evaluations
 - Due 06/14

Final Project – Deliverables

- Project ideation Friday May 28st
 - 5 points
- Project proposal Sunday June 6th
 - 9 points
- Project presentations Monday June 14th
 - 6 points
- Project submissions Friday June 18th
 - 15 points

<u>http://coms2710.barnard.edu/final_project</u>

5 minute presentations by each group

Format:

- Research Question
- Motivation
 - Why should we care?
- Data Collected
 - Where did the data come from? How did you collect it?
 - What filtering was done?
 - Resulting corpus:
 - How many documents? Average size of documents? Vocabulary size?
- Results (preliminary)
 - figures

Goal:

- Publicizing your research is important
- You all to see what everyone else is working on

"Congratulations, offer letter from Google" Spam

"Congratulations, you won the lottery" Not Spam

Which mistake is worse?

Recall

When we do not want false negatives

Precision

When we do not want false positives

ogistic Regression

Mulleulle

Copyright © 2016 Barnard College

Summary of Logistic Regression

- Optimizes P(Y | X) directly
- Define the features
- Learn a vector of weights for each label $y \in Y$
 - Gradient descent, update weights based on error
- Multiple feature vector by weight vector
- Output is P(Y = y | X) after normalizing
- Choose the most probable Y

Summary of Logistic Regression

- Optimizes P(Y | X) directly
- Define the features
- Learn a vector of weights for each label $y \in Y$
 - Gradient descent, update weights based on error
- Multiple feature vector by weight vector
- Output is P(Y = y | X) after normalizing
- Choose the most probable Y

$\begin{bmatrix} f_1, f_2, f_3 \end{bmatrix} \cdot \begin{bmatrix} w_1, \\ w_2, \\ w_3 \end{bmatrix} = (f_1 \times w_1) + (f_2 \times w_2) + (f_3 \times w_3)$

$\begin{bmatrix} [f_{1,1}, f_{1,2}, f_{1,3}] & [w_1, \\ [f_{2,1}, f_{2,2}, f_{2,3}] \end{bmatrix} \cdot \begin{bmatrix} w_2, \\ w_3 \end{bmatrix}$

$= [(f_{1,1} \times w_1) + (f_{1,2} \times w_2) + (f_{1,3} \times w_3), (f_{2,1} \times w_1) + (f_{2,2} \times w_2) + (f_{2,3} \times w_3)]$

We can multiply two matrices A and B if number of columns in A = number of rows in B

The size of the resulting matrix is number of rows in A & the number of columns in B

Matrix Multiplication

$\begin{bmatrix} 1 & 7 \\ 2 & 4 \end{bmatrix} \cdot \begin{bmatrix} 3 & 3 \\ 5 & 2 \end{bmatrix}$ $A \qquad B$

Matrix Multiplication

Matrix Multiplication

$$\vec{b_1} \quad \vec{b_2}$$

$$\downarrow \quad \downarrow$$

$$\vec{a_1} \rightarrow \begin{bmatrix} 1 & 7 \\ 2 & 4 \end{bmatrix} \cdot \begin{bmatrix} 3 & 3 \\ 5 & 2 \end{bmatrix} = \begin{bmatrix} \vec{a_1} \cdot \vec{b_1} & \vec{a_1} \cdot \vec{b_2} \\ \vec{a_2} \cdot \vec{b_1} & \vec{a_2} \cdot \vec{b_2} \end{bmatrix}$$

$$A \qquad B \qquad C$$

Matrix Multiplication Example

Question: What are the dimension of C? 2 rows x 2 columns

Document erm Matrix

All all all a

Copyright © 2016 Barnard College

DMT:

- Rows represent a document
- Columns represent a word
- Values represent some feature of word w_i in document d_j $w_1 w_2 w_3 w_4 \dots \dots w_v$

Properties of Document-Term Matrix

- Sparse matrix
 - Most values are 0
- Very large
 - Many, many, many columns

 d_1

 d_1

Noisy

- Make values in each cell more meaningful
- Reduce the size of the matrix
 - Dimensionality reduction
- Remove noise

Matrix Factorization/ Dimensionality Reduction

Copyright © 2016 Barnard College

Abstract thought

https://www.youtube.com/watch?v=dROx9Djr7mk

Singular Value Decomposition

M = U S V^T nxv nxk kxk kxv

Singular Value Decomposition

M = U S V n x v n x k k x k k x v

 Applying SVD to the DTM is called Latent Semantic Analysis

The name of LDA is based on this

- Monday 06/07 Matrix Factorization
- Tuesday 06/08 Word Embeddings
- Wednesday 06/09 Guest Lecture
 - Attendance required
- Thursday 06/10 ngrams & phrases