BC COMS 2710:
 Computational Text Analysis

RARNARD COIPEEGE OECORHANBIAUNIVERSN
Dimensionality Reduction

Announcements - Assignments

- Readings 05:
- No more this semester - congrats!
- HW02
- Mostly done grading
- You all did very well!!!
- HW04
- Due Thursday

Announcements

- P/D/F deadline is today
- Course Evaluations
- Due 06/14

Final Project - Deliverables

- Project ideation - Friday May $28^{\text {st }}$
- 5 points
- Project proposal - Sunday June $6{ }^{\text {th }}$
- 9 points
- Project presentations - Monday June $14^{\text {th }}$
- 6 points
- Project submissions - Friday June $18^{\text {th }}$
- 15 points
- http://coms2710.barnard.edu/final project

Project Presentations - Monday June 14th

5 minute presentations by each group
Format:

- Research Question
- Motivation
- Why should we care?
- Data Collected
- Where did the data come from? How did you collect it?
- What filtering was done?
- Resulting corpus:
- How many documents? Average size of documents? Vocabulary size?
- Results (preliminary)
- figures

Goal:

- Publicizing your research is important
- You all to see what everyone else is working on

Evaluation Metrics - Incorrect Classification

"Congratulations, offer letter from Google" Span
"Congratulations, you won the lottery" Not span
Which mistake is worse?

Evaluation Metrics

Recall

- When we do not want false negatives

Precision

- When we do not want false positives

Summary of Logistic Regression

- Optimizes $\mathrm{P}(Y \mid X)$ directly
- Define the features
- Learn a vector of weights for each label $y \in Y$
- Gradient descent, update weights based on error
- Multiple feature vector by weight vector
- Output is $\mathrm{P}(Y=y \mid X)$ after normalizing
- Choose the most probable Y

Summary of Logistic Regression

- Optimizes $\mathrm{P}(Y \mid X)$ directly
- Define the features
- Learn a vector of weights for each label $y \in Y$
- Gradient descent, update weights based on error
- Multiple feature vector by weight vector
- Output is $\mathrm{P}(Y=y \mid X)$ after normalizing
- Choose the most probable Y

Scoring one document - dot product

$$
\begin{aligned}
{\left[f_{1}, f_{2}, f_{3}\right] \cdot\left[w_{1},\right.} & =\left(f_{1} \times w_{1}\right)+\left(f_{2} \times w_{2}\right)+\left(f_{3} \times w_{3}\right) \\
w_{2}, & \\
\left.w_{3}\right] & =\sum\left(f_{i} \times w_{i}\right)
\end{aligned}
$$

Score two documents

$$
\left.\left.\begin{array}{rl}
{\left[\left[f_{1,1}, f_{1,2}, f_{1,3}\right]\right.} \\
\left.\left[f_{2,1}, f_{2,2}, f_{2,3}\right]\right]
\end{array}\right] \begin{array}{l}
{\left[w_{1},\right.} \\
w_{2}, \\
\left.w_{3}\right]
\end{array}\right]
$$

Matrix Multiplication

We can multiply two matrices A and B if number of columns in $A=$ number of rows in B

The size of the resulting matrix is number of rows in A \& the number of columns in B

Khan Academy

Matrix Multiplication

$$
\begin{gathered}
{\left[\begin{array}{ll}
1 & 7 \\
2 & 4
\end{array}\right] \cdot\left[\begin{array}{ll}
3 & 3 \\
5 & 2
\end{array}\right]} \\
A \\
B
\end{gathered}
$$

Matrix Multiplication

$$
\left.\left.\begin{array}{r}
\\
\left.\begin{array}{c}
\overrightarrow{a_{1}} \rightarrow \\
\overrightarrow{a_{2}} \rightarrow \\
\rightarrow
\end{array} \begin{array}{cc}
1 & 7 \\
2 & 4
\end{array}\right] \cdot \overrightarrow{b_{2}} \\
\downarrow \\
\downarrow
\end{array}\right] \begin{array}{ll}
3 & 3 \\
5 & 2
\end{array}\right]
$$

Khan Academy

Matrix Multiplication

$$
\left.\begin{array}{c}
\stackrel{\overrightarrow{b_{1}}}{\overrightarrow{b_{2}}} \\
\downarrow \\
\overrightarrow{a_{1}} \rightarrow \\
\overrightarrow{a_{2}} \rightarrow \\
A
\end{array} \begin{array}{ll}
1 & 7 \\
2 & 4
\end{array}\right] \cdot\left[\begin{array}{ll}
3 & 3 \\
5 & 2
\end{array}\right]=\left[\begin{array}{ll}
\overrightarrow{a_{1}} \cdot \overrightarrow{b_{1}} & \overrightarrow{a_{1}} \cdot \overrightarrow{b_{2}} \\
\overrightarrow{a_{2}} \cdot \overrightarrow{b_{1}} & \overrightarrow{a_{2}} \cdot \overrightarrow{b_{2}}
\end{array}\right]
$$

Khan Academy

Matrix Multiplication Example

$$
\begin{array}{cc}
A & B \\
{[[1,2,3]} \\
4,5,6]]
\end{array} \quad \begin{gathered}
{[[7,8} \\
\end{gathered} \begin{gathered}
9,10 \\
11,12]]
\end{gathered}=
$$

Question: What are the dimension of C ? 2 rows x 2 columns

Document-Term Matrix

DMT:

- Rows represent a document
- Columns represent a word
- Values represent some feature of word w_{i} in document d_{j}

$$
\begin{array}{lllllllll}
w_{1} & w_{2} & w_{3} & w_{4} & \ldots & \ldots & \ldots & \ldots & w_{v}
\end{array}
$$

Properties of Document-Term Matrix

- Sparse matrix
- Most values are 0
- Very large

$$
\begin{array}{lllllllll}
w_{1} & w_{2} & w_{3} & w_{4} & \cdots & \cdots & \cdots & \cdots & w_{v}
\end{array}
$$

- Many, many, many columns
- Noisy

$$
d_{1}
$$

$$
d_{1}
$$

$$
d_{n}
$$

Goal

- Make values in each cell more meaningful
- Reduce the size of the matrix
- Dimensionality reduction
- Remove noise

Matrix Factorization/ Dimensionality Reduction

Abstract thought

https://www.youtube.com/watch?v=dROx9Djr7mk

Singular Value Decomposition

$$
\underset{n \times v}{M}=\underset{n \times k}{\bigcup} \underset{k \times k}{S} \quad \underset{k \times v}{V^{\top}}
$$

Singular Value Decomposition

Latent Semantic Analysis

- Applying SVD to the DTM is called Latent Semantic Analysis
- The name of LDA is based on this

Week 6

- Monday 06/07 - Matrix Factorization
- Tuesday 06/08 - Word Embeddings
- Wednesday 06/09 - Guest Lecture
- Attendance required
- Thursday 06/10 - ngrams \& phrases

