BC COMS 2710: Computational Text Analysis

Lecture 17 – Machine Learning: Text Classification (Logistic Regression)

Copyright © 2016 Barnard College

Announcements – Assignments

Readings 05:

- link posted to course site
- due Sunday
- HW 03:
 - Released last Friday
 - Optional has anyone looked at it?
- HW04/Tutorial 5.1
 - Releasing tomorrow or Friday

HW04/Tutorial 5.1

- Given Tweet IDs and labels
- Task:
 - retrieve the tweets using Twitter API
 - Build machine learning classifiers to predict labels on heldout examples
- Data comes from a real 2020 shared task:
 - For this task, participants are asked to develop systems that automatically identify whether an English Tweet related to the novel coronavirus (COVID-19) is informative or not. Such informative Tweets provide information about recovered, suspected, confirmed and death cases as well as location or travel history of the cases.

Final Project – Deliverables

- Project ideation Friday May 28st
 - 5 points
- Project proposal Sunday June 6th
 - 9 points
- Project presentations Monday June 14th
 - 6 points
- Project submissions Friday June 18th
 - 15 points

<u>http://coms2710.barnard.edu/final_project</u>

Beefed up version of project ideation

- 1. Research Question
- 2. Detailed source of data:
 - 1. List of twitter user's, subreddits, etc
- 3. Detailed methods you plan on applying for exploratory data analysis
 - 1. Tf-idf, topic modeling, ...
- 4. Prediction

Paper/write up:

- 3-5 page double spaces, including a few figures and tables
- Notebook:
 - With code for data collection, data analysis, prediction

Data

Native Bayes

Rull and a start

P

Copyright © 2016 Barnard College

Given X, what is the most probable Y? P(Y | X)

How do we determine most probable Y? By Bayes Rule! "Prior" "Likelihood" $Y \leftarrow \operatorname{argmax}_{y_i} P(Y = y_i) P(X | Y = y_i)$ **Naive Bayes Conditional** Independence Assumption $Y \leftarrow \operatorname{argmax}_{y_i} P(Y = y_i) \frac{P(x_1 \mid Y = y_i)P(x_2 \mid Y = y_i)}{* \cdots * P(x_n \mid Y = y_i)}$ $Y \leftarrow \operatorname{argmax}_{y_i} P(Y = y_i) \mid P(x_n \mid Y = y_i)$ 10 Copyright © 2016 Barnard College

$$Y \leftarrow \operatorname{argmax}_{y_i} P(Y = y_i) \prod_n P(x_n | Y = y_i)$$

Hint: Multiplying probabilities leads to ...

even smaller numbers and eventual floatingpoint underflow

Any solutions?

$$\log(x * y) = \log(x) + \log(y)$$

$$Y \leftarrow \operatorname{argmax}_{y_i} P(Y = y_i) \prod_{n} P(x_n | Y = y_i)$$

$$Y \leftarrow \operatorname{argmax}_{y_i} \log P(y_i) + \sum_{n} \log P(x_n | y_i)$$
Class with bighest log probability is still most

Class with highest log probability is still most probably label **Y** for example **X**.

- Inputs to classifiers are features
- We counted words, so think of each word as a feature
- Define a *feature function* over document **x**: $f_i(x)$
- Each unique word has a feature index i
- The function returns the count of word *i*

Naive Bayes Summary

- Fast algorithm:
 - Only requires going through the data once
- Works well with small amounts of training data
- Robust to irrelevant features
- Optimal if independence assumption holds
- Interpretable
- A good dependable baseline for text classification

14

ogistic Regression

Mulleulle

Copyright © 2016 Barnard College

- Don't want independence assumption
- Goal: weigh a feature that helps improve accuracy, but give less weight to the feature if other features overlap with the same correct prediction
- Solution: Logistic Regression
 - Maximum Entropy (MaxtEnt)
 - Multinomial logistic regression
 - Log-linear model
 - Neural network (single layer)

Document	Text	Author
<i>X</i> ₁	the lady doth protest too much methinks	Shakespeare
<i>X</i> ₂	it was the best of times it was the worst of times	Dickens

 $f_7(x)$ is "the" $f_{72}(x)$ is "the best"

 $f_7(x_1) = 1$ $f_{72}(x_1) = 0$

 $f_7(x_2) = 2$

 $f_{72}(x_2) = 1$

Assume we have the a document with the following features

$$f_1(x) = 1$$

 $f_2(x) = 2$
 $f_3(x) = 1$

Assume we have the a document with the following features. Goal is to classify the document as being written by Shakespeare or Dickens

$$f_1(x) = 1$$

 $f_2(x) = 2$
 $f_3(x) = 1$

Let's add weights to the features

Now let's add weights to the features

	Shakespeare	Dickens		
$f_1(x) = 1$	1.31	-0.23		
$f_2(x) = 2$	0.49	0.72		
$f_3(x) = 1$	-0.82	0.1		

- Now let's add weights to the features
- We want a score for each class label

	Shakespeare	Dickens
$f_1(x) = 1$	1.31	-0.23
$f_2(x) = 2$	0.49	0.72
$f_3(x) = 1$	-0.82	0.1

- Now let's add weights to the features
- We want a score for each class label

	Shakespeare	Dickens
$f_1(x) = 1$	1.31	-0.23
$f_2(x) = 2$	0.49	0.72
$f_3(x) = 1$	-0.82	0.1
	1.47	1.31

$$score(x, c) = \sum_{i} w_{i,c} f_i(x)$$

Weights

$$\operatorname{score}(x,c) = \sum_{i} w_{i,c} f_i(x)$$

Shakespeare Dickens 1.47 1.31

But we want probabilities:

$$P(c \mid x) = \frac{\sum_{i} w_{i,c} f_i(x)}{Z} \qquad Z = \sum_{c} \sum_{i} w_{i,c} f_i(x)$$

Math Trick to guarantee values between [0, 1]

$$P(c \mid x) = \frac{\exp(\sum_{i} w_{i,c} f_i(x))}{Z}$$

Copyright © 2016 Barnard College

 $Z = \sum \sum \exp(w_{i,c}f_i(x))$ 24

Slide from Nate Chambers

$$P(c \mid x) = \frac{1}{Z} exp(\sum_{i} w_{i,c} f_i(x))$$

$$P(c \mid x) = \frac{1}{Z} exp(\sum_{i} w_{i,c} f_i(x))$$

$$P(c \mid x) = \frac{1}{Z} exp(\sum_{i} w_{i,c} f_i(x))$$

$$P(c \mid x) = \frac{1}{Z} exp(\sum_{i} w_{i,c} f_i(x))$$

Normalized to get probabilities

"it was the best of times it was the worst of times"

	it	was	the	best	of	apple	pizza	worst	ok
f(x)	2	1	2	1	2	0	0	1	0

Dickens w

	0.2	-0.4	0.32	-0.43	0.3	0.01	0.29	-0.31	0.02
Shakespeare w									
	-0.02	0.5	0.2	0.11	0.22	0.32	0.12	-0.3	0
Copyright © 2016 Barnard College Where do the weights come from? Slide from Nate Chambers									

30

- We need to learn the weights
- Goal: choose weights the give the "best results"
 - or the weights the give the "least error"
- Loss function: measures how wrong our predictions are

$$Loss(y) = -\sum_{n=1}^{N} 1\{y = n\} \log p(y \mid x_n)$$

Example!

$$Loss(dickens) = -\log p(dickens | x_n)$$

when p(y|x) = 1.0, the loss will be 0

Slide from Nate Chambers

Goal: choose weights the give the "least error"

$$Loss(y) = -\sum_{n=1}^{N} 1\{y = n\} \log p(y \mid x_n)$$
$$P(y \mid x) = \frac{1}{Z} exp(\sum_{i} w_{i,y} f_i(x))$$

Choose weights the give probabilities close to
 1.0 to each of the correct labels

Choose weights the give probabilities close to 1.0 to each of the correct labels

Goal: choose weights the give the "least error"

$$Loss(y) = -\sum_{n=1}^{N} 1\{y = n\} \log p(y = n \mid x_n)$$

- Choose weights the give probabilities close to
 1.0 to each of the correct labels
 - But how?!?
 - By using Calculus

- Gradient descent: how we update the weights
- 1. Find the slope of each weight w_i
 - By taking the partial derivative (Calculus III)
- 2. Move in the direction of the slope
- 3. Update all the weights
- 4. Recalculate the loss function based on new weights
- 5. Repeat

• Gradient descent: how we update the weights

Hand waving descriptions:

- 1. Randomly initialize weights
- 2. Compute probabilities for all training examples
- 3. Jiggle the weights up and down based on mistakes
- 4. Repeat

Summary of Logistic Regression

- Optimizes P(Y | X) directly
- Define the features
- Learn a vector of weights for each label $y \in Y$
 - Gradient descent, update weights based on error
- Multiple feature vector by weight vector
- Output is P(Y = y | X) after normalizing
- Choose the most probable Y