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Announcements – Assignments

§ Readings 05:
• link posted to course site 
• due Sunday 

§ HW 03:
• Released last Friday
• Optional – has anyone looked at it?

§ HW04/Tutorial 5.1
• Releasing tomorrow or Friday
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HW04/Tutorial 5.1

§ Given Tweet IDs and labels
§ Task: 

• retrieve the tweets using Twitter API
• Build machine learning classifiers to predict labels on held-

out examples
§ Data comes from a real 2020 shared task:

• For this task, participants are asked to develop systems 
that automatically identify whether an English Tweet 
related to the novel coronavirus (COVID-19) is informative 
or not. Such informative Tweets provide information about 
recovered, suspected, confirmed and death cases as well 
as location or travel history of the cases.
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Final Project – Deliverables

§ Project ideation – Friday May 28st

• 5 points

§ Project proposal – Sunday June 6th

• 9 points

§ Project presentations – Monday June 14th 

• 6 points

§ Project submissions – Friday June 18th 

• 15 points

§ http://coms2710.barnard.edu/final_project
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Final Project – Proposal due Sunday June 6th

Beefed up version of project ideation

1. Research Question
2. Detailed source of data:

1. List of twitter user’s, subreddits, etc
3. Detailed methods you plan on applying for 

exploratory data analysis
1. Tf-idf, topic modeling, …

4. Prediction
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Final Project Submission – Friday June 18th

§ Paper/write up:
• 3-5 page double spaces, including a few figures and 

tables

§ Notebook:
• With code for data collection, data analysis, prediction

§ Data
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Naive Bayes
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Naive Bayes Classifier

Given X, what is the most probable Y? P(Y | X)

How do we determine most probable Y?
By Bayes Rule!
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𝑌 ← argmax!!𝑃 𝑌 = 𝑦" 𝑃 𝑋 𝑌 = 𝑦")

𝑃 𝑥! 𝑌 = 𝑦")𝑃 𝑥# 𝑌 = 𝑦")
∗ ⋯∗ 𝑃 𝑥$ 𝑌 = 𝑦")

𝑌 ← argmax!!𝑃 𝑌 = 𝑦"

𝑌 ← argmax!!𝑃 𝑌 = 𝑦" -
#

𝑃 𝑥# 𝑌 = 𝑦")

Naive Bayes Conditional 
Independence Assumption

"Likelihood""Prior"



Issue with probabilities?

Hint: Multiplying probabilities leads to …

even smaller numbers and eventual floating-
point underflow

Any solutions?
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𝑌 ← argmax!!𝑃 𝑌 = 𝑦" -
#

𝑃 𝑥# 𝑌 = 𝑦")



logs to the rescue

log 𝑥 ∗ 𝑦 = log 𝑥 + log(𝑦)

Class with highest log probability is still most 
probably label Y for example X.
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𝑌 ← argmax!! log 𝑃 𝑦" + 2
#

log 𝑃 𝑥# 𝑦")

𝑌 ← argmax!!𝑃 𝑌 = 𝑦" -
#

𝑃 𝑥# 𝑌 = 𝑦")



Features

§ Inputs to classifiers are features
§ We counted words, so think of each word as a 

feature

§ Define a feature function over document x:
𝑓!(𝑥)

§ Each unique word has a feature index i
§ The function returns the count of word i
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Naive Bayes Summary

§ Fast algorithm:
• Only requires going through the data once

§ Works well with small amounts of training data
§ Robust to irrelevant features
§ Optimal if independence assumption holds
§ Interpretable
§ A good dependable baseline for text

classification
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Logistic Regression
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Alternative to Naive Bayes

§ Don’t want independence assumption 

§ Goal: weigh a feature that helps improve accuracy,

§ Solution: Logistic Regression
• Maximum Entropy (MaxtEnt)
• Multinomial logistic regression
• Log-linear model
• Neural network (single layer)
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but give less weight to the feature if other 
features overlap with the same correct prediction



Feature Example

𝑓"(𝑥) is “the”

𝑓"(𝑥#) =

𝑓"(𝑥$) = 

𝑓"$(𝑥) is “the best”

𝑓"$(𝑥#) = 

𝑓"$(𝑥$) = 
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Document Text Author
𝑋! the lady doth protest too much methinks
𝑋" it was the best of times it was the worst of times

1

2 1

0

Shakespeare
Dickens
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Weights

Assume we have the a document with the 
following features
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𝑓!(𝑥) = 1
𝑓#(𝑥) = 2
𝑓&(𝑥) = 1
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Weights

Assume we have the a document with the 
following features. Goal is to classify the document 
as being written by Shakespeare or Dickens

Let’s add weights to the features
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𝑓!(𝑥) = 1
𝑓#(𝑥) = 2
𝑓&(𝑥) = 1
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Weights

§ Now let’s add weights to the features
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Shakespeare Dickens
𝑓!(𝑥) = 1 1.31 -0.23
𝑓#(𝑥) = 2 0.49 0.72
𝑓&(𝑥) = 1 -0.82 0.1
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Weights

§ Now let’s add weights to the features
§ We want a score for each class label
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Shakespeare Dickens
𝑓!(𝑥) = 1 1.31 -0.23
𝑓#(𝑥) = 2 0.49 0.72
𝑓&(𝑥) = 1 -0.82 0.1
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Weights

§ Now let’s add weights to the features
§ We want a score for each class label
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Shakespeare Dickens
𝑓!(𝑥) = 1 1.31 -0.23
𝑓#(𝑥) = 2 0.49 0.72
𝑓&(𝑥) = 1 -0.82 0.1

score(𝑥, 𝑐) = 2
!

𝑤!,&𝑓!(𝑥)

1.47 1.31

Slide from Nate Chambers



Weights

But we want probabilities:

Math Trick to guarantee values between [0, 1]
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Shakespeare Dickens
1.47 1.31score(𝑥, 𝑐) = 2

!

𝑤!,&𝑓!(𝑥)

𝑃(𝑐 | 𝑥) =
∑!𝑤!,&𝑓!(𝑥)

𝑍
𝑍 = 2

&

2
!

𝑤!,&𝑓!(𝑥)

𝑃(𝑐 | 𝑥) =
exp(∑!𝑤!,&𝑓! 𝑥 )

𝑍
𝑍 = 2

&

2
!

exp(𝑤!,&𝑓! 𝑥 )
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Logistic Regression

§ Logistic Regression is a vector of weights 
multiplied by a vector of features
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𝑃(𝑐 | 𝑥) =
1
𝑍
𝑒𝑥𝑝(2

!

𝑤!,&𝑓! 𝑥 )
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Logistic Regression

§ Logistic Regression is a vector of weights 
multiplied by a vector of features
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𝑃(𝑐 | 𝑥) =
1
𝑍
𝑒𝑥𝑝(2

!

𝑤!,&𝑓! 𝑥 )
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Logistic Regression

§ Logistic Regression is a vector of weights 
multiplied by a vector of features
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𝑃(𝑐 | 𝑥) =
1
𝑍
𝑒𝑥𝑝(2

!

𝑤!,&𝑓! 𝑥 )
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Logistic Regression

§ Logistic Regression is a vector of weights 
multiplied by a vector of features

§ Normalized to get probabilities
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𝑃(𝑐 | 𝑥) =
1
𝑍
𝑒𝑥𝑝(2

!

𝑤!,&𝑓! 𝑥 )

Slide from Nate Chambers



Logistic Regression

“it was the best of times it was the worst of times”
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it was the best of apple pizza worst ok
2 1 2 1 2 0 0 1 0𝑓(𝑥) 

0.2 -0.4 0.32 -0.43 0.3 0.01 0.29 -0.31 0.02

Dickens w

-0.02 0.5 0.2 0.11 0.22 0.32 0.12 -0.3 0

Shakespeare w

Where do the weights come from?
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Learning in Logistic Regression

§ We need to learn the weights
§ Goal: choose weights the give the “best results”

• or the weights the give the “least error”

§ Loss function: measures how wrong our 
predictions are
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𝐿𝑜𝑠𝑠 𝑦 = − 2
'(#

)

1 𝑦 = 𝑛 log 𝑝 𝑦 𝑥')

𝐿𝑜𝑠𝑠 𝑑𝑖𝑐𝑘𝑒𝑛𝑠 = − log 𝑝 𝑑𝑖𝑐𝑘𝑒𝑛𝑠 𝑥')
Example! 

when p(y|x) = 1.0, the loss will be 0 
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Learning in Logistic Regression

§ Goal: choose weights the give the “least error”

§ Choose weights the give probabilities close to
1.0 to each of the correct labels
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𝐿𝑜𝑠𝑠 𝑦 = − 2
'(#

)

1 𝑦 = 𝑛 log 𝑝 𝑦 𝑥')

𝑃(𝑦 | 𝑥) =
1
𝑍
𝑒𝑥𝑝(-

!

𝑤!,#𝑓! 𝑥 )
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Logistic Regression in a picture

Choose weights the give probabilities close to 1.0 
to each of the correct labels
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Image from https://www.analyticsvidhya.com/blog/2021/04/beginners-guide-to-logistic-
regression-using-python/



Learning in Logistic Regression

§ Goal: choose weights the give the “least error”

§ Choose weights the give probabilities close to
1.0 to each of the correct labels
• But how?!?

• By using Calculus
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𝐿𝑜𝑠𝑠 𝑦 = − 2
'(#

)

1 𝑦 = 𝑛 log 𝑝 𝑦 = 𝑛 𝑥')
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Learning in Logistic Regression

§ Gradient descent: how we update the weights

1. Find the slope of each weight 𝑤!
• By taking the partial derivative (Calculus III)

2. Move in the direction of the slope
3. Update all the weights
4. Recalculate the loss function based on new 

weights
5. Repeat
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Learning in Logistic Regression

§ Gradient descent: how we update the weights

Hand waving descriptions:
1. Randomly initialize weights
2. Compute probabilities for all training examples
3. Jiggle the weights up and down based on mistakes
4. Repeat
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Summary of Logistic Regression

§ Optimizes P 𝑌 𝑋) directly 
§ Define the features
§ Learn a vector of weights for each label 𝑦 𝜖 𝑌

• Gradient descent, update weights based on error
§ Multiple feature vector by weight vector
§ Output is P 𝑌 = 𝑦 𝑋) after normalizing
§ Choose the most probable Y 
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