BC COMS 2710:
Computational Text Analysis

Lecture 15 — Machine Learning:
Text Classification (Naive Bayes)
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Announcements — Assignments

= Readings 04:

 link posted to course site
* due Sunday

= HW 02:
« Due Wednesday night (last night)

= HW 03:

* Released today
* Due next Wednesday night
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Final Project — Deliverables

= Project ideation — Friday May 28st

o https://www.overleaf.com/read/yzpgxcgsqdvp

= roughly 250 word overview of what you are
Interested In
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Final Project — Deliverables

Project ideation — Friday May 28st
* 5 points

* Project proposal —fricdaydurme=4* Sunday June 6%
* 9 points

= Project presentations — Monday June 14th
* 6 points

= Project submissions — Friday June 18t
* 15 points

http://coms2710.barnard.edu/final project
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Notes — Pandas comment

When computing the same thing across a row or
column, what should we do?

1. Define a function
2. apply the function

Looping through a dataframe is not ideal
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Slow Jupyterhub & your code {;ﬁ}

“A computer program does what you tell it to
do, not what you want it to do.”

Be careful when looping and adding to lists
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Machine Learning



Machine Learning Algorithm

A mathematical model

calculated based on sample data ("training data")

makes predictions or decisions without being
explicitly programmed to perform the task

Rules —

Data —

Classical
programming

— Answers

Data —»

Answers ——a=

Machine
learning

—= Rules
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Francois Chollet
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Different Types of Machine Learning é;ﬁ:}

= Supervised Learning
 Learn rule from data and answers

= Unsupervised Learning
» Learn a rule for patterns from data

= Reinforcement Learning

* try your rule on a piece of data, and get feedback on
how good your rule was

Slide from Tony Liu
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Guessing the Value of an Attribute iﬁ}

= Based on incomplete information

= One way of making predictions:
» To predict an outcome for an individual,
 find others who are like that individual
e and whose outcomes you know.
« Use those outcomes as the basis of your prediction.
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Two types of predictions:

Classification & Regression

Classification = Categorical
Regression = Numeric

Predicting sentiment:
= Classification

Y.
T

-]
| -
—_—r—

= Regression:
1, ..., 1]
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Prediction Example: Hot dog or not Hot dog? {;]i}
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Spam or Not Spam?

David, Adam 6

Citi Alerts

Humane Rescue Allia.

SLEEP NUMBER

aishagaddafi11119
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Tennis this week? - in playing tennis on Tuesday. It >>>> will b...

Your Citibank account statement is available online-comtoy..

Your HRA E-Newsletter - Read news and events updates from ...

Check out these limited-time Weekend Specials - PLUS get fre...

Inquiry for Investment. - Inquiry for Investment. Assalamu Alai...
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What is this medical article about? {B}

MEDLINE Article MeSH Subject
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Sentiment Analysis

...Zany characters and richly applied satire, and
some great plot twists

It was pathetic. The worst part about it was the
boxing scenes...

...awesome caramel sauce and sweet toasty

¥ almonds. | love this place!

— ...awful pizza and ridiculously overpriced...
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Broad applications of sentiment analysis {;]?:;}

= Movie: is this review positive or negative?
* Products: what do people think about the new iPhone?
= Public sentiment: how is consumer confidence?

= Politics: what do people think about this candidate or
iIssue?

= Prediction: predict election outcomes or market trends
from sentiment
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Text Classification

Input:
 a document d
 afix set of classes C ={c,, c,, ..., C;}

« Atraining set of n labeled documents
(d11 C1)! (d27 C2)1 ey (dni Cn)

Output:

* Alearned classifier f
* fis a mapping from d ->c¢
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Training a Classifier

Attributes Predicted
(features) of label of the
an example example
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Setup for training and evaluating a classifier i%}

and labels

!

classifier’s
performance
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Scikit-learn train and predict

scikit-learn uses a standard set of functions for all
models

The two main ones for our purposes

model.fit(X, y) — train the model with the given data set
model.predict(X test) — get predictions for the given test set

Slide from Jorge Mendez
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Different types of classifiers

= Neural Networks

= K-Nearest Neighbors
= | ogistic Regression
= Naive Bayes

Copyright © 2016 Barnard College
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Bag of Words Representation

| love this movie! It's sweet,
but with satirical humor. The
dialogue is great and the
adventure scenes are fun...
It manages to be whimsical
and romantic while laughing
at the conventions of the
fairy tale genre. | would
recommend it to just about
anyone. l've seen it several
times, and I'm always happy
to see it again whenever |
have a friend who hasn't
seen it yet!

fairy always lovey, it
It whimsical it |

and  seen ' anyone

frlenﬁappy dialogue

B T recommend

who | i movie 1t
it ' but rgtmantlc |
several y
again j; the humor
the  “geen would
to scenes |
the
fun |

and

whenever

_conventions
with

it

I

the

to
and
seen
yet
would

whimsical
- times

sweet
satirical

adventure

genre
fairy
humor
have
great

Slide from Dan Jurafsky
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Classify document based on BoW i%}

What is the probability of the class given the BoW

seen 2
sweet 1

f whimsical 1 ): C
recommend 1

happy 1 éb

oo oo %)
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Bayes Rule {E}

P(d|lc)P(c)
P(d)

P(cld)=
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Bayes Rule Derivation
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L N
Bayes Rule for documents and classes i%}

Given document d, what is the probability of
category c

P(d|c)P(c)

P(cld)= ()
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Naive Bayes Classifier

Choose category c that has the highest probability

given document d

C,ap =argmax P(cld)

MAP is “maximum a
posteriori” = most likely

ceC class

= argmaX P(d l C)P(C) Bayes Rule
ceC P (d )

= argmaX P(d | C)P(C) Dropping the

ceC

denominator
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Naive Bayes Classifier

Choose category c that has the highest probability
given document d

"Likelihood" "Prior"

C,up =argmax P(d | c)P(c)

ceC

How do we represent document d
Answer: Bag of Words

= argmax P(x,,x,,...,x, | c)P(c)
ceC
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Naive Bayes Independent Assumption {B}

P(x,,Xx,,...,x, |c)

= Bag of Words assumption: Assume position doesn’t
matter

= Conditional Independence: Assume the probabilities
P(x;|c;) are independent given the class c.

P(x,,...,x, lc)=P(x,lc)* P(x,lc)* P(x;lc)e...* P(x, |c)

Plugging this into our prediction equation:

Coap = argmax P(x,,x,,...,x, | c)P(c)
ceC

Cyp = argmax P(c j)n P(xlc)
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Computing probabilities

Cyp = argmax P(c; )H P(xlc)

ceC EX
Count Frequencies in training data

Copyright © 2016 Barnard College _ 37
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Computing probabilities

Cyp = argmax P(c; )H P(xlc)

ceC EX
Count Frequencies in training data

P(xi\cj) =

Copyright © 2016 Barnard College _ 38
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Computing probabilities

= argmax P(c. )H P(xlc)

ceC EX
Count Frequencies in training data

P(CJ) —

P(xi\cj) =

Ntotal
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Computing probabilities

= argmax P(c. )H P(xlc)

ceC EX
Count Frequencies in training data

P(CJ) —

P(x|c;) = 5

Ntotal
count(x;, ¢;)

» ey count(x,c;)

fraction of times word x; appears
among all words in documents of topic c;
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Computing probabilities

= argmax P(c. )H P(xlc)

ceC EX
Count Frequencies in training data

Maximum Likelihood

Estimation
Plc;) =
( ]) N total
count(x;, ¢;)

P(x|c;) = 5

» ey count(x,c;)

fraction of times word x; appears
among all words in documents of topic c;
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Question

What if we have seen no training positive documents
with the word fantastic?

A : . count("fantastic", positive
P("fantastic" |p051t1ve) = ( P ) = 0

E count(w,positive)
weV

Probability of class will be O, regardless of other words

Cyg = argmax P(c; )H P(xlc)
ceC EX

Copyright © 2016 Barnard College _ 42
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Smoothing

A( ) = count(x;,¢;) + 1
xilej) = > e y(count(x, c;) + 1)

B count(x;,c;) + 1
(X, ey count(x,c;) )+ |V|

Laplacian smoothing (add 1)

Copyright © 2016 Barnard College _
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Learning a Naive Bayes Classifier é%}

e From training corpus, extract Vocabulary

= Calculate P(c;) terms * Calculate P(w, | ¢;) terms
* Foreachc;inCdo e Text; < single doc containing all docs;
docsj < all docs with class =C; e Foreach word W, in Vocabulary

n, < # of occurrences of w, in Text;
ldocs;; |

P(Cj)e n+a

| total # documents| P(w, l¢c;)<
n+ ol Vocabulary |
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Predict with Naive Bayes Classifier i%}

Give a document of composed of words X

choose the class ¢
that maximizes the Naive Bayes equation

Cyp = argmax P(c; )H P(xlc)

ceC xeX
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Scikit-learn train and predict

scikit-learn uses a standard set of functions for all
models

The two main ones for our purposes

* model.fit(X, y) — train the model with the
given data set

* model.predict(X_test) — get predictions for the
given test set
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Consideration in Naive Bayes

Unknown Words

« words that are not in our training data but are in our
test data

* Ignore them
* Pretend they are not in our test

Stop Words

 For NB, removing them doesn’t usually help
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Naive Bayes Example



What label should we predict for test?

Cat Documents
Training -  just plain boring
- entirely predictable and lacks energy
- no surprises and very few laughs
very powerful
the most fun film of the summer
predictable with no fun

o+ +

Test

Copyright © 2016 Barnard College _ 49
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Procedure

Cat Documents 1. Prior from training:
Training - just plain boring
- entirely predictable and lacks energy " ¢
. P(c-) =
- no surprises and very few laughs J Neoral
+  very powerful
+  the most fun film of the summer 5D myith"
Test ?  predictable with no fun 2 ATE]) i
3. Likelihoods from training:
(wilc) = count(w;,c) + 1 _
p(w;lc) = ooy count(w, o) + [V] 4. Scoring the test set:
Hint: for this example, do we care about words not in test?
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