BC COMS 2710: Computational Text Analysis

BARNARD COLLEGE OF COLUMBIA UNIVERSIT

Lecture 10 – Topic Models

Copyright © 2016 Barnard College

Announcements – Assignments

Tutorial 2.2

- Due tomorrow night (Thursday, 04/20)
- Long Broken into lots of small steps
- Readings:
 - Reading 03 link course site, due Sunday
- HW 02:
 - Released later today
 - Open ended assignment
- Office hours

Guest speakers: June 1st, 9th

Guest Speakers:

- Maria Antoniak:
 - PhD student @ Cornell June 1st

- Lucy Li
 - PhD student @ Berkeley June 9th
 - Author of Content Analysis of Textbooks via Natural Language Processing: Findings on Gender, Race, and Ethnicity in Texas US History Textbooks

- Insights from individual words
 - TF-IDF
 - Dictionary based methods
- Insights from specific documents
 - Readability
- Today: Group individual words into larger constructs

Course Outline

•	Python Overview	Week 1
•	 Lexical based analysis methods Text Processing Document Representation Topic Modeling 	Week 2 - 3
-	Data CollectionWeb ScrapingAPIs	Week 4
•	 Machine Learning Regression & Classification Clustering 	Week 5
•	 Advanced Topics & Final Projects Dimensionality Reduction Word Representations 	Week 6

Topic Modeling

Goal: Identify underlying topics across documents

What are topics?

Tokens that are likely to appear in the same context

Hidden structure that determines how **tokens** appear in a corpus

Want to uncover

Topic Modeling: Corpora -> Topics

Input: Millions of Books

Output: topics (distributions over words)

killed wounded sword slain arms military rifle wounds loss human Plato Socrates universe philosophical minds ethics inflammation affected abdomen ulcer circulation heart ships fleet sea shore Admiral vessels land boats admiral sister child tears pleasure daughters loves wont sigh warm sentence clause syllable singular examples clauses syllables provinces princes nations imperial possessions invasion women Quebec Women Iroquois husbands thirty whom steam engines power piston boilers plant supplied chimney lines points direction planes Lines scale sections extending

Each row is a topic

Breakout Rooms: https://mimno.infosci.cornell.edu/jsLDA/

Copyright © 2016 Barnard College

Discovering Topics

Copyright © 2016 Barnard College

How do we discover topics?

- Latent Semantic Analysis
- Probabilistic Latent Semantic Analysis
- Latent Dirichlet Allocation

How do we discover topics?

- Latent Semantic Analysis
- Probabilistic Latent Semantic Analysis
- Latent Dirichlet Allocation

- Probabilistic model
- Generative model

- Each word appears independent of each other
- Each word depends on the topic
 - Topics have a distribution of words
 - Topics have a distribution of documents

- M = number of documents
- N = number of words in a document
- K = number of topics (we choose this)

- M = number of documents
- N = number of words in a document
- K = number of topics (we choose this)

M = number of documents

- N = number of words in a document
- K = number of topics (we choose this)

Copyright © 2016 Barnard College

. . .

Slide from David Mimno

22

LDA Algorithm

Copyright © 2016 Barnard College

Training LDA Model

- 1. Randomly assign words to topics
- 2. Repeat many times:
 - 1. For each document:
 - 1. For each token, re-assign the topic based on:
 - 1. Topic assignment for every other token in the document
 - 2. Topic assignment for every other instance of the type in the the corpus

3. Return: Topics assignments for all tokens

music band songs rock album jazz pop song singer night	book life novel story books man stories love children family	art museum show exhibition artist paintings painting century works	game Rhicks points team season play games night coach	show film television movie series says life man character know
theater play production show stage street broadway director musical directed	clinton bush campaign gore political republican dole presidential senator house	stock market percent funds companies stocks investment trading	restaurant sauce menu tood dishes street dinner chicken served	budget tax governor county mayor billion taxes plan legislature fiscal

Training LDA Model

- 1. Randomly assign words to topics
- 2. Repeat many times:
 - 1. For each document:
 - 1. For each token, re-assign the topic based on:
 - 1. Topic assignment for every other token in the document
 - 2. Topic assignment for every other instance of the type in the the corpus
- 3. Return: Topics assignments for all tokens

Randomly assign words to topics

Randomly assign words to topics

Randomly assign words to topics

3	2	1	3	1
Etruscan	trade	price	temple	market

Total counts across corpus

	1	2	3
Etruscan	1	0	35
trade	10	8	1
price	42	1	0
market	50	0	1
temple	0	0	20

Training LDA Model

- 1. Randomly assign words to topics
- 2. Repeat many times:
 - 1. For each document:
 - 1. For each token, re-assign the topic based on:
 - 1. Topic assignment for every other token in the document
 - 2. Topic assignment for every other instance of the type in the the corpus
- 3. Return: Topics assignments for all tokens

Training LDA Model

- 1. Randomly assign words to topics
- 2. Repeat many times:
 - 1. For each document:
 - 1. For each token, re-assign the topic based on:
 - 1. Topic assignment for every other token in the document
 - 2. Topic assignment for every other instance of the type in the the corpus
- 3. Return: Topics assignments for all tokens

	1	2	3
Etruscan	1	0	35
trade	10	8	1
price	42	1	0
market	50	0	1
temple	0	0	20

	1	2	3
Etruscan	1	0	35
trade	10	8	1
price	42	1	0
market	50	0	1
temple	0	0	20

	1	2	3
Etruscan	1	0	35
trade	10	8	1
price	42	1	0
market	50	0	1
temple	0	0	20

	1	2	3
Etruscan	1	0	35
trade	10	7	1
price	42	1	0
market	50	0	1
temple	0	0	20

Which topics occur in this document?

Which topics like the word-type "trade"?

	1	2	3
trade	10	7	1

Which topics like the word "trade"?

Pick a topic for "trade"?

	1	2	3
Etruscan	1	0	35
trade	10	7	1
price	42	1	0
market	50	0	1
temple	0	0	20

	1	2	3
Etruscan	1	0	35
trade	11	7	1
price	42	1	0
market	50	0	1
temple	0	0	20

Training LDA Model – Gibbs Sampling

- **1.** Randomly assign words to topics
- 2. Repeat many times:
 - 1. For each document:
 - **1.** For each token, re-assign the topic based on:
 - 1. Topic assignment for every other token in the document
 - 2. Topic assignment for every other instance of the type in the the corpus
- 3. Return: Topics assignments for all tokens

Modeling Decisions

Copyright © 2016 Barnard College

Modeling decisions – hard choices

- Document definition
- Interesting words
- Knobs:
 - K Number of topics
 - Hyper-parameters

Which topics like the word "trade"?

Hyperparameters - alpha

Which topics like the word "trade"?

Which topics like the word "trade"?

Evaluating Topics

ununu

Copyright © 2016 Barnard College

Output of topic models

Top 10 topic terms

face, problem, depress, econom, suffer, economi, caus, great depress, crisi, prosper bank, money, tax, pay, debt, loan, rais, fund, paid, govern worker, labor, work, union, job, employ, strike, factori, industri, wage govern, power, feder, nation, peopl, author, constitut, state, system, unit roosevelt, wilson, peac, presid, treati, negoti, theodor roosevelt, taft, leagu, agreement men, women, famili, children, young, work, woman, home, mother, husband citi, york, urban, hous, live, town, center, communiti, move, chicago railroad, build, line, technolog, transport, road, develop, travel, invent, canal good, trade, product, manufactur, market, import, produc, economi, consum, tariff farmer, farm, planter, small, land, cotton, plantat, crop, famili, larg

What makes topics bad?

- Random, unrelated words
- Intruder words
- Boring, overly general words
- Chimaeras:
 - Multiple topics combined

Evaluation – Word Intrusion Task

- Take top k words in a topic
 - Usually 5 or 10
- Substitute 1 word with a top word from another topic
- Shuffle the works
- Ask someone to pick the intruder
 - If they can pick the intruder it's a good topic