BC COMS 2710: Computational Text Analysis

BARNARD COLLEGE OF COLUMBIA UNIVERSITY

Lecture 7 – TF-IDF

Copyright © 2016 Barnard College

Announcements – Assignments

Readings:

- Reading 02 link course site, due Sunday
- Tutorial 1.3:
 - Graded half, will release scores later today
- Week 2 Tutorials:
 - 2.1 Tokenization, lemmatization, stopwords, etc
 - Based on mondays lecture
 - 2.2 Exploring dictionary-based methods
 - Based tomorrow's lecture

Announcements - Home

Homework 01

- Extended to Saturday
- Homework 02
 - Based on today's material
 - Released tomorrow or Friday
 - will have a week to complete
 - More open-end than Homework 01
 - NYTimes Obituaries:
 - Finding document specific terms
 - Finding similar obituaries

Yesterday

- Document matrix
- Started TF-IDF
 - Not so great

Today

TF-IDF:

- Overview
- Computing it in Sklearn
- Most important/interesting terms
- Most similar documents

- 1. Discover interesting terms
- 2. Compare documents in a corpus

Frequency of word w in document d

How to compute it?

Why not use word counts? TF normalizes for different document lengths

Issue with Term Frequency (TF)?

- Most frequent words are often not informative
- Why?
 - Zipf's law
 - Common across documents in a corpus
- Solution:
 - Weigh a word's TF based on how the word is spread across the corpus

How common word w is across the corpus

How to compute it?

$$\mathbf{DF}(\mathbf{w}) = \frac{|tf(w,d)\neq 0|}{|D|}$$

Number of documents that contain *w* divided by number of document

How common word w is across the corpus

How to compute it?

$$IDF(\mathbf{w}) = \frac{|D|}{|tf(w,d)\neq 0|}$$

Number of documents divided by number of documents that contain **w**

IDF(the) =

IDF*(the)* = 1

IDF*(the)* = 1

2. superfragilistic appears in one document

IDF(superfragilistic) =

IDF*(the)* = 1

2. superfragilistic appears in one document

IDF(*superfragilistic*) = number of documents

TF-IDF of word **w** in document **D**:

Term Frequency * Inverse Document Frequency

Captures terms that are frequent in a document and specific to the document in the corpus

However, which will be much bigger, TF or IDF?

log function is a way to scale down idf

Understanding log

How common word w is across the corpus

How to compute it?

$$IDF(\mathbf{w}) = log(\frac{|D|}{|tf(w,d)\neq 0|})$$

Number of documents divided by number of documents that contain **w**

IDF*(the)* = log(1) = ?

2. superfragilistic appears in one document

IDF(superfragilistic) = log(number of documents)

TF-IDF of word **w** in document **D**:

Term Frequency * Inverse Document Frequency

Captures terms that are frequent in a document and specific to the document in the corpus

TF-IDF of word that appears in every corpus is 0

TF-IDF of word that appears in every corpus is 0 Word still has some information

$$TF(w) = 0$$
$$IDF(w) =$$

$$TF(w) = 0$$
$$IDF(w) = log(\frac{|D|}{|tf(w,d)\neq 0|})$$

$$TF(w) = 0$$
$$IDF(w) = log(\frac{|D|}{0})$$

$$TF(w) = 0$$
$$IDF(w) = log(\frac{|D|}{0})$$
Can't divide by 0

Smoothing

If you saw something happen 1 out of 3 times, is its probability really 1/3?

If you saw something happen 0 out of 3 times, is its probability really 0?

If you saw something happen **3 out of 3 times**, is its probability really **1**?

Slide from Jason Eisner

Let's add one document that contains each word

Smoothing IDF:

$$IDF(w) = log\left(\frac{|D|}{|tf(w,d)\neq 0|+1}\right) + 1$$

Eineling Informative

Mullen III.

Copyright © 2016 Barnard College

Comparing cocuments

Mulleun.

Copyright © 2016 Barnard College

Cosine Simalrity

Similarity defined as: cosine of the angle between the vectors

Compute $cos(\theta)$: the normalized dot product of vectors A and B

Dot product of A and B:

$$A * B = \sum_{i}^{n} a_{i} b_{i}$$