BC COMS 2710:
Computational Text Analysis

Lecture 7 — TF-IDF

Copyright © 2016 Barnard College



Announcements — Assignments

= Readings:
« Reading 02 — link course site, due Sunday

= Tutorial 1.3:
« Graded half, will release scores later today

= \Week 2 Tutorials:

« 2.1 — Tokenization, lemmatization, stopwords, etc
« Based on mondays lecture

« 2.2 — Exploring dictionary-based methods
 Based tomorrow’s lecture

Copyright © 2016 Barnard College 2



Announcements - Home

= Homework 01
« Extended to Saturday

= Homework 02

« Based on today’s material

» Released tomorrow or Friday
* will have a week to complete

* More open-end than Homework 01
 NYTimes Obituaries:

» Finding document specific terms
» Finding similar obituaries

Copyright © 2016 Barnard College 3



Yesterday

= Document matrix
= Started TF-IDF

* Not so great

Copyright © 2016 Barnard College — Adam Poliak 4



= TF-IDF:
* Overview
« Computing it in Sklearn
* Most important/interesting terms
* Most similar documents

Copyright © 2016 Barnard College — Adam Poliak 5






TF-IDF use cases

1. Discover interesting terms

2. Compare documents in a corpus

Copyright © 2016 Barnard College 7



Term Frequency (tf): {E}

Frequency of word w in document d

How to compute it?

wi

number of times w appears in D
| Document |

divided by of number tokens in D

Why not use word counts?
TF normalizes for different document lengths

Copyright © 2016 Barnard College 8



Issue with Term Frequency (TF)?

= Most frequent words are often not informative
= Why?

« Zipf's law

« Common across documents in a corpus

= Solution:

* Weigh a word’s TF based on how the word is spread
across the corpus

Copyright © 2016 Barnard College 9



Document Frequency i]?::}

How common word w is across the corpus

How to compute it?

| tf (w,d)+0 |

DF(w) = D

Number of documents that contain w divided
by number of document

Copyright © 2016 Barnard College 10



Inverse Document Frequency

How common word w is across the corpus

How to compute it?

| D |

IDF(w) = T tf(w,d)=0 |

Number of documents divided
by number of documents that contain w

Copyright © 2016 Barnard College 11



L N
Inverse Document Frequency examples {B}

1. the appears in every document

IDF (the) =

Copyright © 2016 Barnard College 12



L N
Inverse Document Frequency examples {B}

1. the appears in every document

IDF (the) = 1

Copyright © 2016 Barnard College 13



L X
Inverse Document Frequency examples 5;3}

1. the appears in every document
IDF(the) = 1
2. superfragilistic appears in one document

IDF (superfragilistic) =

Copyright © 2016 Barnard College 14



L X
Inverse Document Frequency examples 5;3}

1. the appears in every document
IDF(the) = 1
2. superfragilistic appears in one document

IDF (superfragilistic) = number of documents

Copyright © 2016 Barnard College 15



TF-IDF: é;]?i}
Term Frequency - Inverse Document Frequency

TF-IDF of word w in document D:

Term Frequency *

Captures terms that are frequent in a document
and In the corpus

However, which will be much bigger, TF or IDF?

Copyright © 2016 Barnard College 16



Scaling down IDF

log function is a way to scale down idf
2.0
—
1.0
g
|
00 1o 20 30 40 50 60 70 80 90 100
-1.0

Copyright © 2016 Barnard College 17



Understanding log

Copyright © 2016 Barnard College 18



Inverse Document Frequency

How common word w is across the corpus

How to compute it?

| D |
IDF(w) = log(| tf (w,d)=0 | )

Number of documents divided
by number of documents that contain w

Copyright © 2016 Barnard College 19



L X
Inverse Document Frequency examples 5;3}

1. the appears in every document

IDF(the) = log(1) =

2. superfragilistic appears in one document

IDF (superfragilistic) = log(number of documents)

Copyright © 2016 Barnard College 20



TF-IDF: é;]?i}

Term Frequency - Inverse Document Frequency

TF-IDF of word w in document D:

Term Frequency *

Captures terms that are frequent in a document
and In the corpus

Copyright © 2016 Barnard College 21



L N
Remaining issues {B}

TF-IDF of word that appears in every corpus is O

TF-IDF of word w that never appears:

Copyright © 2016 Barnard College 22



4 X
Remaining issues {;ﬁ:}

TF-IDF of word that appears in every corpus is O
Word still has some information

TF-IDF of word w that never appears:

TH(w) =
IDF(w) =

Copyright © 2016 Barnard College 23



L X
Remaining issues {;ﬁ:}

TF-IDF of word that appears in every corpus is O
We probably don’t want this

TF-IDF of word w that never appears:

TF(w) =0
IDF(w) =

Copyright © 2016 Barnard College 24



L X
Remaining issues {;ﬁ:}

TF-IDF of word that appears in every corpus is O
We probably don’t want this

TF-IDF of word w that never appears:

TF(w) =0

| D | )
w,d)#0 |

IDF(w) = log(| o

Copyright © 2016 Barnard College 25



L X
Remaining issues {;ﬁ:}

TF-IDF of word that appears in every corpus is O
We probably don’t want this

TF-IDF of word w that never appears:

TF(w) =0

IDF(w) = log (>

0

Copyright © 2016 Barnard College 26



L X
Remaining issues {;ﬁ:}

TF-IDF of word that appears in every corpus is O
We probably don’t want this

TF-IDF of word w that never appears:

TF(w) = 0
IDF(w) = log(*o-
Can’t divide by 0

Copyright © 2016 Barnard College 27



Smoothing

If you saw something
happen 1 out of 3 times, is
its probability really 1/3?

If you saw something
happen O out of 3 times, is
its probability really 0?

If you saw something
happen 3 out of 3 times, is
its probability really 1?

Slide from Jason Eisner

Copyright © 2016 Barnard College 28



Smoothing - IDF {E,}

Let’'s add one document that contains each word

Smoothing IDF:

_ D
IDF(w) = log (| T ) +1

Copyright © 2016 Barnard College 29






!
{
“'4
{
3
{
Rl
i




Cosine Simalrity

Cosine Distance/Similarity

Item 2

Item 1

Cosine Distance

Copyright © 2016 Barnard College 32



Cosine Similarity

Similarity defined as:
cosine of the angle between the vectors

Compute cos(6) :
the normalized dot product of vectors A and B

Dot product of A and B:
n

AxB = Zaibi

i

Copyright © 2016 Barnard College 89



