BC COMS 2710:
Computational Text Analysis

Lecture 2 — Python Overview

Copyright © 2016 Barnard College

Announcements

Tutorial 1.1
» Should be submitted today (Tuesday 05/04)

Tutorial 1.2
« Should be submitted tomorrow (Wednesday 05/05)

= Tutorial 1.3
« Should be submitted Friday (05/07)

= Homework 01:
* Due Monday 05/10

» Reading Week 1
» Due Sunday 05/09

Copyright © 2016 Barnard College 2

Updated Rubric

Participation 5%
4 Homeworks 30%
Reading reflections 15%
Daily Tutorials 20%

Final Project 35%

Copyright © 2016 Barnard College 3

Python 5;3}

= Popular for data science & software development

= Mature data science and computational text
analysis tools

= | earn through practice and doing

* Follow along in the demos

Copyright © 2016 Barnard College 4

Assignment Statements

ihours _,per_wkj = {24*7:

E Name J[Any expression J

= Statements perform an action
e don’t have a value

= Assignment statement changes the meaning of
the name to the left of the = symbol

= The name is bound to a value (not an equation)

Copyright © 2016 Barnard College 6

Numbers — Integers and Floats

Two real number types in Python
" int: an integer of any size
» float: a number with an optional fractional part

An int never has a decimal point; a float does
A float might be printed using scientific notation

Copyright © 2016 Barnard College

Limitations on float values

» Floats have limited size (the limit is huge)

» Floats have limited precision of 15-16 decimal
places

= After arithmetic, the final few decimal places can
be wrong

Copyright © 2016 Barnard College 9

Strings 5;3}

A string value is a snippet of text of any length

1 __1

= '3
= ‘word’
= “there can be 2 sentences. Here's the second!”

Strings consisting of numbers can be converted to
numbers

= int("12'), ftloat (‘1.2")

Any value can be converted to a string
= str(5) becomes “5”

Copyright © 2016 Barnard College 11

Discussion Question

Assume you have run the following statements:

X =3
y=I4-I
z="'5.6

What is the source of the error in each example?
A x+y
B. x+intly + 2)
C. str(x) + int(y)
D. y + float(z)

Copyright © 2016 Barnard College 12

Types — Every value has a type

We’'ve seen 5 types so far:

= nt: 2
n float: 2.2
= str: ‘Red fish, blue fish’

Copyright © 2016 Barnard College 13

Types — Every value has a type

The type function tells you the type of a value

= type(2)
= type(2+2)

J (13

An expression’s “type” is based on its value
» x =2, y="hello”

" type(x), typely) = 777

Copyright © 2016 Barnard College 14

L N
Conversions {B}

Strings that contain numbers can be converted to
numbers

= int("12")

" float(”1.2")

11 . /7
|

Not a good idea

Copyright © 2016 Barnard College 15

4 X
Conversions 5;]?3;}

Any value can be converted to a string
= str(6)

Numbers can be converted to other numeric types
= float(1)
» int(2.3). # DANGER: why is this a bad idea

Copyright © 2016 Barnard College 16

Collections considered

Ordered:
= | |sts
= Tuples

Unordered:

= Sets
= Dictionaries

Copyright © 2016 Barnard College — Adam Poliak 18

= store multiple items in a single variable

11 1

e fruit = [”bananas , apples , oranges"]

/) I

= QOrder is preserved

= Access items with brackets
e first_fruit = fruit[O]
e second_fruit][= fruit[1]
o last_fruit = fruit[-1]

« What are the values assigned to these three names?

Copyright © 2016 Barnard College — Adam Poliak 19

Lists — accessing sub-lists

11 11 1 11

fruit = ["lbananas”, "apples”, “oranges”]

= Access multiple items:
e sub_fruitl = [0:2]
sub_fruit1 = 7?7

sub_fruit2 = [:2]
sub_fruit2 = ?77?

sub_fruit3 = [0:]
sub_fruit3 = 777

Copyright © 2016 Barnard College — Adam Poliak 20

Lists — adding to lists

1 1 1 /4

fruit = ["bananas”, "apples”, "oranges”]

= Adding at the end:
* fruit.append(”grapefruit”)

= Modifying at a specific location:
e fruit[1] = “strawberry”
o fruit 7?7

Copyright © 2016 Barnard College — Adam Poliak 21

Tuples {B}

= |[mmutable lists

= play = ("Shakespeare”, "A Midsummer Night's
Dream”, 1595)

= Used to group together related data

Copyright © 2016 Barnard College — Adam Poliak 22

= Unordered and unindexed collection

= authors = set(["Shakespeare", "Austin”,
“Morrison”, “Woolt"])

= No duplicates

Copyright © 2016 Barnard College — Adam Poliak 23

Dictionary

» Store data values in key:value pairs.

= Ordered, changeable, no duplicates

-keys- -values-

2]
Ibll: 2, 'a’l M 'alpha'
11)
C :3} o o il M 'Omega'
|gl | . |vgamma|

Copyright © 2016 Barnard College — Adam Poliak 24

Anatomy of a Call Expression

D D
Argument to the

function
U 4

/iwmn
function

"Call f on 27."

Copyright © 2016 Barnard College 26

Anatomy of a Call Expression

"What
function
to call

Copyright © 2016 Barnard College

-

First argument

/

Second
argument

27

Python Built-in Functions

abs ()

all()

any()
ascii()
bin()

bool ()
breakpoint ()
bytearray ()
bytes ()
callable()
chr()
classmethod()
compile()

complex()

delattr()
dict ()
dir()
divmod()
enumerate()
eval ()
exec()
filter()
float()
format ()
frozenset ()
getattr()
globals()

hasattr ()

Built-in
Functions

hash ()
help()

hex ()

id()

input ()
int()
isinstance()
issubclass()
iter()

len()

list()
locals()

map ()

max()

memoryview()
min ()

next ()
object ()
oct ()
open()
ord()

pow ()
print()
property ()
range()
repr ()
reversed ()

round()

set ()
setattr()
slice()
sorted()
staticmethod ()
str()
sum()
super ()
tuple()
type()
vars ()

zip()

__import ()

,g.,
‘.
ok
.

Say we have a list of author names, how can we
find the length of each name?

Copyright © 2016 Barnard College — Adam Poliak 30

Conditionals

Only apply computation under certain scenario

Copyright © 2016 Barnard College — Adam Poliak 31

Libraries

= Don’t reinvent the wheel

We are
too busy

33

Installing and Accessing Python Libraries

= |nstall via command line:
* pip install <Library Name>

= Access library in python:
* import <Library Name>

Copyright © 2016 Barnard College — Adam Poliak 34

Libraries we will use

= BeautifulSoup — webscraping

= NItk — Processing text
= Spacy - Processing text
= |ittle_mallet — Topic Modeling

» Pandas - Tables
= Matplotlib - Visualization
= Numpy — Vectors

= Sklearn — Machine Learning

Copyright © 2016 Barnard College — Adam Poliak 85)

